Press "Enter" to skip to content

Bluetooth 5 For Advertisements: Everything need to know

You’ve probably heard so much about the recently released Bluetooth 5.

You’ve seen all the hype on 2x Speed4x Range, and 8x Advertising data increase capabilities.

But what does this all mean?? How does it achieve all these improvements? Is it really possible to achieve all these simultaneously?? What about power consumption? How is that affected?

Look:

There was so much media hype surrounding the release of Bluetooth 5, and lots of conflicting information with very few details. Many media articles made it sound like you can achieve all these simultaneously!

In this first post of a series on Bluetooth 5, I’ll go ahead and demystify all these facts for you as well as cover Bluetooth 5 Advertisements in detail.

The goal with this series of blog posts is:

  • Fully understand the 3 main improvements that Bluetooth 5 achieves (Speed, Range, and Advertisements).
  • Know which of these will benefit your application/use-case the most.
  • How you can utilize the new improvements of Bluetooth 5 to your advantage.
  • How to determine whether a BLE chip/module supports the new features you’re interested in utilizing.
  • Which applications and use cases will benefit from each of these improvements.
  • Have a full example of implementing each of these features on a chosen platform.

First, let’s make it clear that Bluetooth 5 does not achieve both increased range and speed simultaneously – in fact, you will absolutely sacrifice speed in favor of range and vice versa!

A few things to note:

  • Not all these new Bluetooth 5 features require new hardware.
  • Some vendors will provide software updates to support some of these new features of Bluetooth 5 (for features that don’t require a hardware update).
  • Vendors can claim Bluetooth 5 support, but they won’t necessarily support the popular improvements, so be careful when choosing a module/chip with the intention of utilizing higher speeds or extended range. According to the spec section Volume 1, Part A, 1.2:

The mandatory symbol rate is 1 megasymbol per second (Msym/s), where 1 symbol represents 1 bit therefore supporting a bit rate of 1 megabit per second (Mb/s), which is referred to as the LE 1M PHY. The 1 Msym/s symbol rate may optionally support error correction coding, which is referred to as the LE Coded PHY.

An optional symbol rate of 2 Msym/s may be supported, with a bit rate of 2 Mb/s, which is referred to as the LE 2M PHY.

Notice the “optional” keyword in both cases of the LE 2M PHY (achieving 2x speed) and LE Coded PHY (achieving longer range via Forward-Error Correction).

PHY is the term used to refer to the Physical Layer of Bluetooth technology. For more info on the term, refer to the Wikipedia article on PHY.

So, let’s take a look at what’s new with Bluetooth 5.0 (compared to 4.2 and earlier versions). Several new features are introduced in the Bluetooth Core Specification 5.0 Release (compared to version 4.2):

  • Slot Availability Mask (SAM)
  • 2 Msym/s PHY for LE
  • LE Long Range
  • High Duty Cycle Non-Connectable Advertising
  • LE Advertising Extensions
  • LE Channel Selection Algorithm #2

We will start by talking briefly about the new higher speed 2 Msym/s PHY and the Long Range feature (utilizing the Coded PHY). After that, we will go deep into Bluetooth 5 Advertisements in general as well the new LE Advertising Extensions feature. In upcoming posts, we’ll go over each of the longer range and higher speed features in more detail.

We will also go over how to implement Extended Advertisements on the nRF52840 Preview Development Kit and provide the complete source code. Since these are new Bluetooth 5 features, an app such as nRF Connect or any other smartphone app that’s running on a non-Bluetooth 5 supported device won’t be able to discover the advertisements. This is why we will be using the new Bluetooth Tracker by Ellisys. The Tracker is one of the best commercial sniffers out there (if not the best) because of its form factor, competitive price and elegant software UI design compared to others out there, and best of all it fully supports Bluetooth 5.

How Bluetooth 5 increases speed to 2x and range to 4x

With the addition of the new 2 Msym/second PHY, Bluetooth 5 can now transfer data at 2x the rate of the original 1 Msym/s PHY. There are three PHYs in Bluetooth 5:

  • 1 Mbps PHY: This PHY is mandatory and is uncoded (modulated at 1 Megasymbol/sec). Uncoded means that each symbol is represented by exactly one bit, so a theoretical data rate of 1 Megasymbol/sec equates to 1 Mbps of data.
  • 2 Mbps PHY: This is uncoded as well (modulated at 2 Megasymbol/sec), and helps achieve the higher speed (2 Mbps) than Bluetooth 4.2.
  • Coded PHY: This is also modulated at 1 Megasymbol/sec. By using a coding technique, the data can be error-corrected on the receiving end (to a given extent). This helps achieve the longer range in Bluetooth 5 – we are simply increasing the receiver sensitivity rather than changing transmit power on the transmitter side.

This following figure from the official spec better explains this: 

Table for PHY types in Bluetooth 5

There are certainly trade-offs for choosing one of these PHYs over the other (there are also restrictions on where each can be used). In addition to the increased speed, the new 2M PHY also reduces power consumption since the same amount of data is transmitted in less time reducing the radio-on time. Coexistence is also improved because of the less radio-on time.

The benefit of using the LE Coded PHY is increased range with the trade-off of both higher power consumption and reduced speed (down to 125kbps or 500 kbps depending on the coding used S=2 vs. S=8).

Here are a few videos showing both the longer range and higher speed features of Bluetooth 5 by Nordic Semiconductor and Texas Instruments:

 

How and when can you utilize Bluetooth 5 Advertisements?

 

No doubt that Beacon applications will benefit the most from extended advertisements. However, it will take time before you can practically utilize this feature since it will depend on the scanning devices (smartphones, tablets, PCs) supporting Bluetooth 5 Extended Advertisements.

Beacons can now broadcast more data and allow for a better user experience. Connectable devices can also utilize this to send more data and allow connections on the secondary advertising channels (which can help avoid interference and noise from other devices broadcasting on the primary channels).

The use of Periodic Advertisements can also help in making the broadcasting device more consistently discovered and monitored, with the possibility of the broadcast data being updated to reflect certain attributes and aspects of the broadcasting device (e.g. in the case where a scanning device is always present in the proximity of a broadcasting device, now this scanning device can more consistently “follow” the advertiser and monitor its updates more frequently).

Conclusion & Summary

Extended Advertisements (including periodic advertisements) is just one of the exciting and promising features of the new Bluetooth 5. We will go into more detail on the other two features of Bluetooth 5: longer range, and higher speed in the upcoming posts.

To summarize what we covered today:

  • Overview of Bluetooth 5 and its major improvements
  • How Bluetooth 5 achieves higher speed and longer range
  • General overview of Bluetooth advertising
  • Types of Bluetooth 5 advertising channels
  • In-depth look into Extended Advertisements and Periodic Advertisements
  • Example code for sending extended advertisements using the nRF52840 Preview Development Kit
  • Video showing the capture of these advertisements by a commercial Bluetooth 5 sniffer (Ellisys Bluetooth Tracker)
  •  How and when to utilize Extended Advertisements

Be First to Comment

Leave a Reply

Your email address will not be published.